Chaotic Behavior Control in Fluidized Bed Systems Using Artificial Neural Network Quarterly Progress Report

نویسنده

  • A. ESSAWY
چکیده

Coal-fired power plants are very important source for electric power generation in the United States and worldwide. This is because Coal is abundant and inexpensive compared to oil and gas. However, greater use of coal is constrained by the difficulties of solid fuel use and of cleanup of combustion products containing ash and gaseous pollutants. Results of innovative research can expand coal utilization by making it more convenient to handle and by increasing its reliability to that of liquid and gaseous fuels. Direct utilization of coal fluidized combustion is of interest because of potential cost savings and improved environmental performance. Thus, pressurized fluidized-bed combustors (FBC) are becoming very popular, efficient, and environmentally acceptable replica for conventional boilers in Coal-fired and chemical plants. In this paper, we present neural network-based methods for chaotic behavior monitoring and control in FBC systems, in addition to chaos analysis of FBC data, in order to localize chaotic modes in them. Both of the normal and abnormal mixing processes in FBC systems are known to undergo chaotic behavior. Even though, this type of behavior is not always undesirable, it is a challenge to most types of conventional control methods, due to its unpredictable nature. The performance, reliability, availability and operating cost of an FBC system will be significantly improved, if an appropriate control method is available to control its abnormal operation and switch it to normal when exists. Since this abnormal operation develops only at certain times due to a sequence of transient behavior, then an appropriate abnormal behavior monitoring method is also necessary. Those methods has to be fast enough for on-line operation, such that the control methods would be applied before the system reaches a non-return point in its transients. It was found that both normal and abnormal behavior of FBC systems are chaotic. However, the abnormal behavior has a higher order chaos. Hence, the appropriate control system should be capable of switching the system behavior from its high order chaos condition to low order chaos. It is to mention that most conventional chaos control methods are designed to switch a chaotic behavior to a periodic orbit. Since this is not the goal for the FBC case, further developments are needed. We propose neural network-based control methods which are known for their flexibility and capability to control both non-linear and chaotic systems. A special type of recurrent neural network, known as Dynamic System Imitator (DSI), will be used for the monitoring and control purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

متن کامل

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

متن کامل

Decentralized Advanced Model Predictive Controller of Fluidized-Bed for Polymerization Process

The control of fluidized-bed operations processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. There are varieties of problems in chemical engineering that can be formulated as NonLinear Programming (NLPs). The quality of the developed solution significantly affects the performa...

متن کامل

Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence

Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....

متن کامل

Simulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor

In this research, modeling, simulation, and control of a methanol-to-olefins laboratory fixed-bed reactor with electrical resistance furnace have been investigated in both steady-state and dynamic conditions. The reactor was modeled as a one-dimensional pseudo-homogeneous system. Then, the reactor was simulated at steady-state conditions and the effect of different parameters including...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008